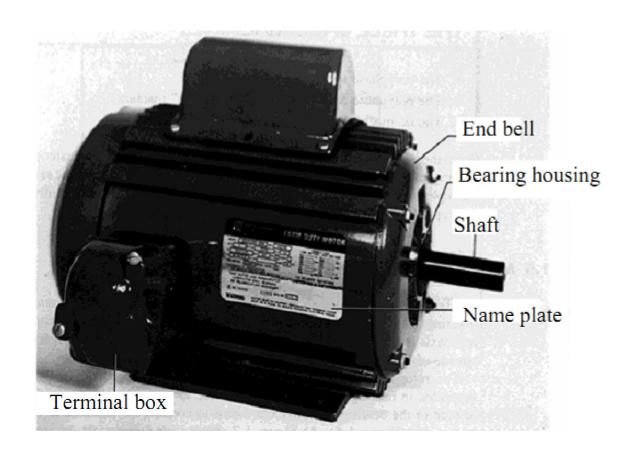
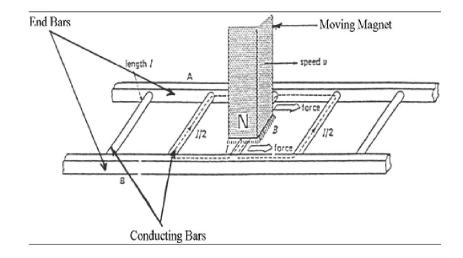
# Mesin AC


Motor Induksi

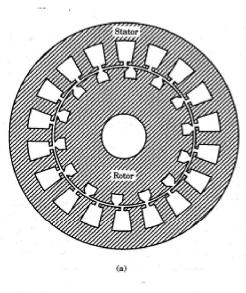
Dian Retno Sawitri

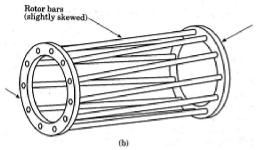
#### Pendahuluan


- Mesin induksi digunakan sebagai motor dan generator. Namun paling banyak digunakan sebagai motor. MI merupakan perangkat penting di industri
- Kebanyakan jenis motor yang digunakan di industri adalah motor induksi sangkar tupai.
- Ada dua jenis MI, yaitu satu fasa dan dua fasa
- Generator induksi jarang digunakan. Generator induksi biasanya dipakai pada pembangkit listrik tenaga angin.

## Motor Induksi satu Fasa




## Prinsip Dasar

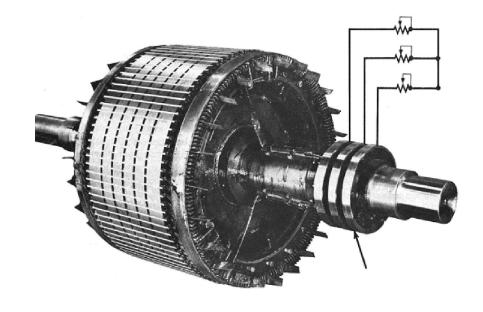

- Emf diinduksikan pada batang konduktor sebagai "cut" oleh fluksi sementara magnet bergerak
- E = BVL (Faraday's Law)
- Emf diinduksikan atau menghasilkan arus I, yang menghasilkan gaya, F.
- F = BIL (Gaya Lorentz )



#### Konstruksi

- Konstruksi Stator
  - Stator dari MI mirip dengan stator pada motor sinkron
  - Inti besi dilaminasi dengan slot-slot
  - Koil diletakkan pada slot untuk membentuk belitan 3 atau 1 fasa.
- Konstruksi rotor sangkar tupai (Squirrel-cage)
  - Inti besi terlapisi dengan slot
  - Batang logam dibentuk dalam slot
  - Dua cincin hubung singkat (short circuit) dengan batang
  - Batang dimiringkan untuk mengurangi derau





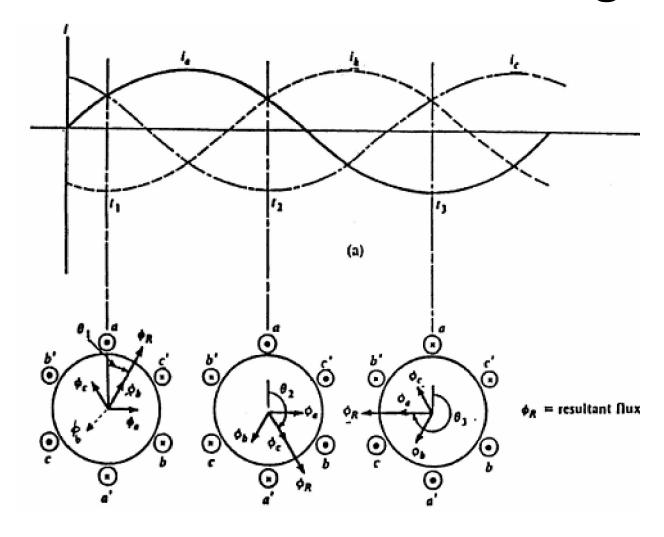

#### Konstruksi Motor DC

#### **Wound Rotor**

- The picture shows the rotor of a large wound-rotor motor
- The ends of each phase is connected to a slip ring.
- Three brushes contact the three slip-rings to three wye connected resistances

#### **Konstruksi Rotor**



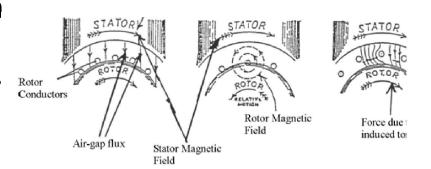

## Rotasi Medan Magnet

- Pada mesin ac, arus 3 fasa Ia, Ib, dan Ic, masingmasing memiliki besar yang sama, tetapi berbeda fase 120°, menghasilkan sebuah medan magnet dengan besar yang konstan yang berotasi pada ruangan.
- Medan magnet yang dihasilkan oleh arus belitan 3 fasa yang seimbang disebut rotasi medan magnet atau rotating magnetic field (RMF)
- Keberadaan RMF merupakan kondisi penting untuk operasi dari mesin rotasi ac

# Produksi Rotasi Medan Magnet

- Konsep RMF diilustrasikan pada gambar berikut.
- Arus 3 fasa Ia, Ib, dan Ic, yang seimbang, mengalir melalui belitan 3 fasa aa', bb', dan cc'.
- Koil aa', bb', dan cc' dipisahkan jarak 120°. Arus di setiap koil bertanggung jawab untuk menghasilkan fluksi magnetnya sendiri, berturutturut, фa, фb dan фc.
- Gambar berikut memperlihatkan resultan fluksi фr yang dihasilkan dari tiga fluksi sesaat. фr memiliki ciri, (i) besarannya konstan tetapi (ii) berotasi dalam ruang waktu.

# Produksi Rotasi Medan Magnet




## Motor Tiga Fasa

- Stator diberi energi dengan tegangan 3 fasa
- Arus pada belitan stator menghasilkan rotasi medan magnet. Medan ini berputar dalam celah udara.
- Medan magnet stator terhubung dengan konduktor rotor melalui celah udara dan tegangan akan diinduksikan dalam konduktor rotor.
- Arus dalam konduktor rotor akan menghasilkan medan magnetnya sendiri yang berlawanan arah dengan medan magnet statoer.
- Torsi dibentuk karena interaksi dari medan magnet stator dan rotor mendorong rotor untuk berputar.
- Arah rotasi rotor sama dengan arah rotasi dari putaran medan magne dalam celah udara

## Prinsip Kerja

- Diasumsikan RMF dihasilkan oleh rotasi arus stator berlawanan arah jarum jam.
- Aeah medan magnet (saluran fluksi) dihasilkan oleh arus rotor yg berlawanan arah jarum jam.
- Konduktor rotor kemudian didorong dari kiri (daerah medan kuat) ke kanan (medan lemah). Sehingga rotor beruputar dalam arah yang sama dengan RMF



# Sinkronisasi Kecepatan dan Slip

- Medan magnet stator (rotating magnetic field) berputar pada kecepatan,  $n_s$ , kecepatannya sinkron.
- Jika,  $n_m$  = kecepatan rotor, "slip" s motor induksi didefinisikan :

$$s = \frac{n_s - n_m}{n_s} \times 100\%$$

# Sinkronisasi Kecepatan dan Slip

- Saat diam, s = 1, maka  $n_m = 0$ . Pada kecepatan sinkron,  $n_m = n_s$ , s = 0.
- Kecepatan mekanik dari rotor, dalam terminologi kecepatan slip dan sinkron

$$n_m = (1 - s)n_s$$

$$\omega_m = (1 - s)\omega_s$$

# Frekuensi Arus dan Tegangan Rotor

• Dengan rotor yang diam, frekuensi dari tegangan dan raus yang diinduksikan sama dengan arus dan tegangan frekuensi stator,  $f_e$ . Jika rotor berputar pada kecepatan  $n_m$ , Maka kecepatan relatif adalah kecepatan slip.

$$n_{slip} = n_s - n_m$$

- $n_{slip}$  merupakan akibat dari induksi
- Tetapi  $n_m = n_s(1 s)$  oleh definisi slip.
- Sehingga,  $n_{slip} = n_s n_s (1 s)$ , jadi frekuensi dari tegangan dan arus yang diinduksikan adalah,  $f_r = sf_e$ .

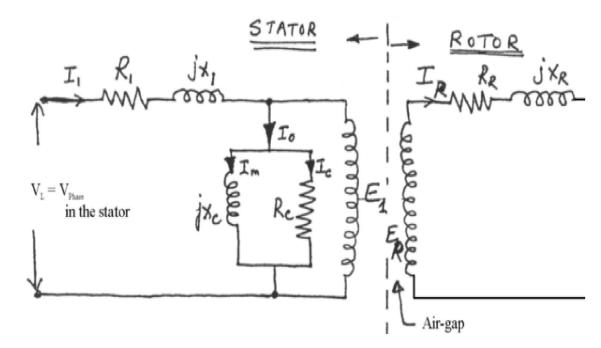
## Contoh

- MI 3 fasa, 20 hp, 208 V, 60 Hz menghasilkan 15 kW pada slip 0.05
- Hitung:
  - Synchronous speed (Kecepatan sinkron)
  - Rotor speed (kecepatan rotor)
  - Frequency of rotor current (frekuensi arus rotor)
- Solusi
  - Synchronous speed  $n_s = 120 \text{ f/p} = (120) / 6 = 1200 \text{ rpm}$
  - Rotor speed  $n_r = (1-s) n_s = (1-0.05) (1200) = 1140 \text{ rpm}$
  - Frequency of rotor current  $f_r = s f = (0.05) (60) = 3 Hz$

# Rangkaian Ekivalen

I1 = stator current/phase

R1 = stator winding resistance/phase


**X1** = stator winding reactance/phase

R<sub>R</sub> and X<sub>R</sub> are the rotor winding resistance and reactance per phase, respectively

I<sub>R</sub> = rotor current

V1 = applied voltage to the stator/phase

I<sub>0</sub> = Ic + I<sub>m</sub>
(I<sub>m</sub> = magnetizing current, I<sub>c</sub>
= core-loss component of current)



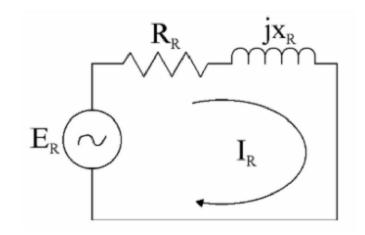
# Induksi Tegangan

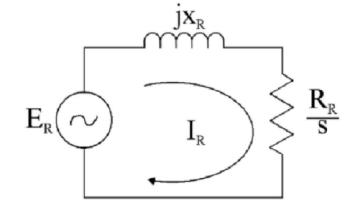
 Let E<sub>RO</sub> be the induced voltage in the rotor at stand-still

$$E_{R0} = 4.44 N_R \phi_m f_r$$

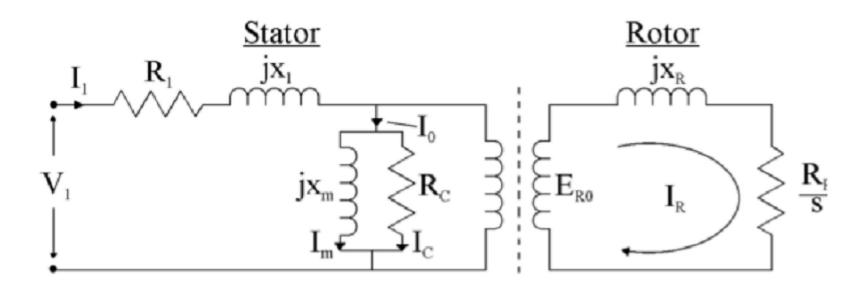
- since, fr = fe, at stand-still,  $E_{R0} = 4.44N_R \phi_m f_e$
- If ER is the induced voltage in the rotor winding with fr = sfe, (s ≠ 1) then,

$$E_{R} = 4.44 N_{R} \phi_{m} f_{r}$$


$$E_{R} = 4.44 N_{R} \phi_{m} s f_{e}$$


$$E_{R} = s E_{R}$$

## Sirkuit Rotor


$$I_{R} = \frac{E_{R}}{R_{R} + jX_{R}} = \frac{s \cdot E_{R_{0}}}{R_{R} + s \cdot jX_{R_{0}}}$$

$$I_{R} = \frac{E_{R_{0}}}{\frac{R_{R}}{S} + jX_{R_{0}}}$$

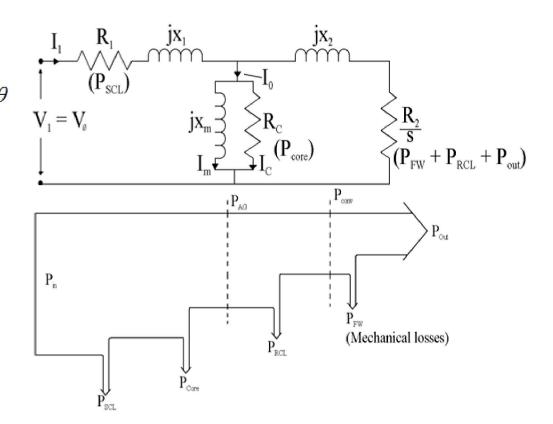




## Motor Induksi



$$I_2 = \frac{I_R}{a_{eff}}$$


$$R_2 = a_{eff}^2 R_R$$

$$X_2 = a_{eff}^2 X_R$$

#### Power Flow

 $P_{in}$  = input power to the motor (3 phase)  $P_{in} = \sqrt{3}V_L I_L \cos\theta = 3V_{\phi}I_{\phi} \cos\theta$ 

 $R_1$  = accounts for the stator copper losses ( $P_{SCL}$ )  $R_C$  = accounts for the core losses  $R_2/s$  = accounts for the losses  $P_{FW}$ ,  $P_{RCL}$  and the output power,  $P_{out}$   $P_{RCL}$  = rotor copper losses  $P_{FW}$  = friction and windage losses



#### Contoh 2

- Motor induksi 3 fasa, 480 V, 50 hp, mengalirkan arus 60 A pada 0.85 pf lagging. Rugi-rugi tembaga stator ( $P_{scl}$ ) adalah 2 kW dan rugi-rugi tembaga rotor ( $P_{Rcl}$ ) adalah 700 W. Gesekan dan rugi-rugi tahanan ( $P_{F\&W}$ ) 600 W, rugi-rugi inti ( $P_c$ )1800 W dan rugi2 diabaikan, carilah:
  - The air gap power (daya celah udara)
  - The converted power (daya yang dikonversi)
  - The output power (output daya)
  - The efficiency of the motor (efisiensi motor)

## Solusi Contoh 2

a) 
$$P_{in} = \sqrt{3}V_T I_L \cos(\theta)$$

$$P_{in} = \sqrt{3}(480)(60)(0.85) = 42.4 \text{ kW}$$

$$P_{AG} = P_{in} - P_{SCL} - P_{core} = 42.4 - 2 - 1.8 = 38.6 \text{ kW}$$

b) 
$$P_{conv} = P_{AG} - P_{RCL} = 38.6 - 0.7 = 37.9 \text{ kW}$$

c) 
$$P_{out} = P_{conv} - P_{F\&W} = 37.9 - 0.6 = 37.3 \text{ kW}$$

d) 
$$\eta = \frac{P_{out}}{P_{in}} = \frac{37.3}{42.4} = 88\%$$

#### Contoh 3

A 460 V, 25 hp, 60 Hz, four pole, Y-connected induction motor has the following impedances:

 $R1 = 0.641 \Omega$ 

 $R2 = 0.332 \Omega$ 

 $X1 = 1.106 \Omega$ 

 $X2 = 0.464 \Omega$   $Xm = 26.3 \Omega$ 

The total rotational losses (including core losses) are 1100 W for a slip = 2.2%, find:

(a) The speed.

(d) The converted and output power

(b) The stator current.

(e) The induced and load torque

(c) Power factor

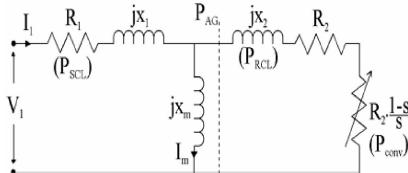
(f) Efficiency

## Solusi Contoh 3

a) 
$$n_s \frac{120f}{P} = \frac{(120)(60)}{4} = 1800 \text{ rpm}$$

$$n_m = (1-s)n_s = (1-.022)(1800) = 1760 \text{ rpm}$$

b) 
$$Z_{total} = \left\{ \left( \frac{R_2}{s} + jx_2 \right) \mid | (jx_m) \right\} + (R_1 + jx_1) = 14.07 \angle 33.6$$


$$I_1 = \frac{V_{phase}}{Z_{total}} = 18.88 \angle -33.6$$

c)
$$p.f. = cos(33.6) = 0.833 lagging$$

d)
$$P_{in} = \sqrt{3}(480)(18.88)(0.833) = 12.53 \text{ kW}$$

$$P_{SCL} = 3I_1^2 R_1 = 3(18.88)^2 (0.641) = 685 \text{ W}$$

$$P_{AG} = P_{in} - P_{SCL} = 12,530 - 685 = 11.845 \text{ kW}$$

